
Software Supported Pattern Development in Intelligence Analysis∗

Michael Wolverton and Ian Harrison and John Lowrance and Andres Rodriguez and Jerome Thomere
Artificial Intelligence Center

SRI International
333 Ravenswood Ave

Menlo Park, California 94025
<lastname>@ai.sri.com

Abstract

Intelligence professionals work with incomplete and noisy
data. Their information needs are often hard to express, and
almost impossible to get right the first time. This paper de-
scribes the GEM pattern language for encoding analysts’ in-
formation needs in graphical patterns, and its use in the Link
Analysis Workbench (LAW) system to find inexact matches
to those patterns in large relational data sets. The LAW user
typically interacts with the system through a cycle in which
the user (1) creates an initial GEM pattern corresponding to
his information need, (2) uses the LAW matcher to retrieve
a collection of matching episodes in the data, (3) revises the
pattern based on the shortcomings of the matches, and (4)
repeats the process until the revised pattern is returning the
right data. The pattern language and the system are designed
to facilitate the user in quickly traversing this cycle.

Introduction
Information gathering for intelligence analysis requires flex-
ibility, on the part of both the analyst and the information
gathering tools he uses. The data sets from which informa-
tion is collected are typically noisy and incomplete. Situa-
tions of interest to the analyst may differ only subtly from
common and irrelevant situations. And in many cases the
analyst may only be able to describe the situation of interest
at a high level or with a limited amount of precision, because
of imperfect knowledge about the terminology, organization,
or content of the data he is searching.

For these reasons and others, information gathering is
rarely a one-shot operation. Instead, the process is gener-
ally an evolutionarycycle, where the pattern of interest is
constructed and then repeatedly refined based on results re-
turned from the data. The analyst is heavily involved at all
stages of the cycle. Supporting this cycle poses technical
challenges for the tool developer, both in designing a pattern
language flexible enough to describe both very specific and
very general match criteria, and in producing a system that
allows the analyst to define and refine patterns and interpret
results quickly.

This paper describes the pattern development cycle as
supported by the LAW system (Wolvertonet al. 2003).

∗This research was supported under Air Force Research Labo-
ratory (AFRL) contract number F30602-01-C-0193.

LAW features several characteristics that are important for
this cycle:

1. An intuitive pattern language based onsemantic graphs.

2. A simplesimilarity metricthat supports the retrieval and
ranking of inexact matches.

3. A pattern editor that supports easy editing of patterns, and
a pattern library that allows users to construct complex
hierarchical patterns out of simpler, previously-defined
ones.

4. A match display interface designed to allow the user to
understand at a glance the quality and content of a match
to a pattern.

We begin by illustrating LAW and its support for the pat-
tern development cycle through an extended use case of in-
telligence gathering using the system. We then describe
LAW and its pattern language, GEM, in more detail. Finally
we discuss some key issues and areas for future work.

The Intelligence Analysis Cycle in LAW
To demonstrate LAW’s support for the pattern development
cycle, the next section will present an example from the do-
main of the EAGLE challenge problem simulator (Schrag
2006). Here we give a brief summary of that simulated do-
main. The challenge problem is to support an analyst in
identifying, within a large database, instances of planned
attacks by terrorists on infrastructure elements, exploiting
known vulnerabilities. The goal is to infer from the data
as much detail about the planned attack, before the attack
happens, which includes the people involved, the target, the
method to be used and the planned steps involved. In ad-
dition evidence found in the data to support the hypothesis
that an attack is being planned should also be reported, such
as available transaction data, like resource acquisition (e.g.
buying dual-use materials), as well as any relevant SIGINT
data (e.g. telephone intercept records).

The simulated domain is made up of ordinary people and
terrorists (people are termed Agents in the domain). Ev-
eryone is a member of one or more groups. Terrorists are
members of one or moreThreatGroups(as well as poten-
tially being members ofNonThreatGroupstoo.) All people
in the domain have a number ofcapabilities(e.g. Flying
a plane, Driving a large truck) throughout the length of the

Figure 1: GroupMemberVisitsTarget—a basic graphical pat-
tern

simulation. Some of the capabilities are reported, some are
not. People make purchases (acquireresources) throughout
the simulation (e.g. ammonium nitrate fertilizer, car rental,
hotel reservations), for which the transaction records may or
may not be available. Agents communicate with one another
and amongst group members, to plan events (both benign
and threat), possibly leaving a transaction trail, and make
visits to infrastructure items (termedTargetsin the domain).

Groups (both ThreatGroups and NonThreatGroups), have
designated methods (modesin the domain ontology) which
they apply at a target. Modes are sets of capabilities and
resources. Targets have associated modes too, which ref-
erence ways in which resources and capabilities can be ap-
plied at a target. Some of these modes are legitimate use of
the target (e.g. parking a rental car in an underground car
park above a large public building, taking a boxknife to a
mall). These are termedProductivityMode’s. Other modes
however, calledVulnerabilityMode’s, are only exploited by
ThreatGroups, (e.g. taking a bomb to a building).

The task for the analyst is to sift through a large database
of records and try to identify early warning signs that in-
dicate that a ThreatGroup is planning an attack on a target
through a particular VulnerabilityMode, using some of the
capabilities and resources of its members. The task is made
more complicated, because the data is not perfect. For in-
stance, not all ThreatGroup’s are known and neither is their
complete membership nor their VulnerabilityMode’s. Some
of the data is also corrupted. In addition, some of the re-
source and capability application data is indicative of both
legitimate behavior as well as illegal behavior.

Use Case of the Pattern Development Cycle in
LAW

In contrast to systems that are designed to support link anal-
ysis in a single pass, LAW is designed to support a pattern
development cycle in which the analyst creates, evaluates,
and refines the pattern repeatedly. This section describes
this cycle through a hypothetical use case for LAW, in which
an analyst searches for situations of interest within a dataset
created by the simulator described in the previous section.
The data set in this example contains approximately 130,000
nodes and 330,000 links, and all the results discussed be-

Figure 2: GroupAcquiringThreateningResource—A hierar-
chical pattern with a cardinality constraint

low represent the results of actual runs of the LAW matcher
against this data set.

The analyst in our scenario has been using patterns de-
signed to look for threatening group activity. A group must
meet several conditions to carry out an attack on a target.
Figure 1 shows one. It represents a group member visiting
the target. Figure 2 shows another. It represents a group ac-
quiring a threatening resource—i.e., members of the group
make one or more transactions acquiring a resource that can
be used to exploit a VulnerabilityMode. The larger pattern
the analyst uses to detect threatening activity (not shown)
looks for a single group meeting all the conditions. It is con-
structed using LAW’s graphical pattern editor (an example
screenshot of which is shown in Figure 3) by combining and
connecting these (and other) smaller patterns.

To complement the search for threatening group activ-
ity, the analyst gets the idea of looking for a slightly dif-
ferent kind of scenario: one where two threat groups co-
operate to carry out different portions of an attack. The
idea he has is that the two groups will cooperate through an
intermediary—a person who is a member of both groups.
He uses the pattern editor and the pattern library to con-
struct a new pattern out of the same primitive graphs from
the single-group pattern; the only change is to add a Person
node for the intermediary and have two separate group nodes
instead of one.

The result is shown in Figure 4. The pattern represents
two groups potentially cooperating—one group makes one
or more visits to a target, and the other acquires two or more
resources necessary to attack that target via a mode that it is
known to exploit—while sharing a member in common. He
uses the LAW matcher to find matches to this pattern, and
LAW displays the results.

LAW’s display of the matches it found, shown in Figure
5, allows the analyst to see the mappings between the pattern
and the matching data in detail. Tables on the left side of the
screen describe the pattern-node-to-data-node mappings.1

The table contains the mappings of the top level nodes in

1In the simulated domain, entities are associated only with
machine-generated IDs, so the mappings shown in Figure 5 are

Figure 3: Screenshot of pattern editor

the pattern, and contains buttons for each subgraph that ex-
pand into full mapping display tables for them if pressed. On
the right of each table is a graphical summary of the match
that shows, via color-coding, which pattern nodes and links
were matched in the data, and which were missing.

For this pattern in this data set, LAW finds 23 matches.
These represent a good starting collection of scenarios that
merit further investigation. But the analyst feels that this set
of results still does not cover all the group-cooperation pos-
sibilities he should be investigating. In particular, because
information about threat group membership is often sketchy
and incomplete, the pattern’s requirement that the intermedi-
ary be a known member of both threat groups seems overly
restrictive. He wonders what kind of results he would get if,
instead of requiring known group membership, he used re-
peated communication with members of the group as a sur-
rogate.

He uses the pattern editor to modify the pattern to include
this new condition, and the resulting revised pattern is shown
in Figure 6. Now the graph represents a situation where the
intermediary is linked to each of the two groups in two ways:

1. Directly, through a membership link, and

2. Indirectly, through a TwoWayCommunicateWGroup sub-
pattern, which specifies that the person initiates two or
more communications (e.g., phone calls) with known
members of the group

Additionally, he changes the maximum allowable cost on
the top-level pattern from 0 to 2. Since each node and link
in the top level pattern has a cost of 1 (LAW’s default), this
effectively makes it so that the two group membership links
are optional.

For the new pattern, LAW now returns 40 matches. They
are presented to the analyst in order, best match to worst.

not terribly informative. In more realistic test domains we have
used, mapped nodes in the data are described by more user-friendly
names or textual summaries.

Figure 4: CrossGroupIntermediary, version 1—Pattern rep-
resenting two groups cooperating through an intermediary
who is a known member of both groups

In this case, that effectively means that the candidate inter-
mediaries with the strongest known ties to the two groups—
both known group membership and repeated communica-
tion with group members—are presented first, and the ones
with the weakest ties are presented last.

Not all of the 40 matches to the pattern will turn out
to be cooperating groups preparing an attack—presumably,
the majority will not. But they represent a good candidate
set for further investigation. This further investigation can
move outside the relational data—where the analyst uses
the matches as starting points for searches for information in
other formats (text, video, discussions with colleagues, etc.).
Or it can be a continuation of the pattern cycle, where the
analyst revises the pattern again to add more requirements
that will narrow the set of returned matches to a smaller and
more relevant set.

LAW
The purpose of LAW is to help intelligence analysts find in-
stances in the world of generic scenarios comprised of com-
binations of events and facts about players involved in those
events. This problem requires more than a simple database
querying capability because of the sources of ambiguity and
uncertainty within the process mentioned above—noisy and
incomplete data, etc. To deal with these problems and to
meet the additional requirement of understandability, we
have chosen a pattern representation based on graphs, and
a match metric based ongraph edit distance.

Pattern Representation: GEM
The graphical pattern language used in LAW is called GEM
(for Graph Edit Model). A GEM pattern consists of two
parts: a graph, representing aprototypeof the situation of
interest; and a collection of edit distance parameters, rep-
resenting the allowabledeviationsfrom the prototype, along
with the impact these deviations have on the assessed quality
of the match. We describe the former here, and describe the
latter below under the Pattern Comparison Metric heading.

Figure 5: LAW’s display of pattern matches

The graph portion of the pattern representation (called the
pattern graph) is a collection of typed vertices (nodes), and a
collection of labeled edges (links) relating the vertices. Each
node in the graph is ageneric concept(Sowa 1984) of a type,
or a literal. The types are organized in an ontology. Labels
on edges are also typed with classes organized in the ontol-
ogy. Specific instances can be approximated in the pattern
using literals. For example, the person Michael Wolverton
can be represented by attaching a PERSON node to a node
containing the string “Michael Wolverton” via a NAME re-
lation.2 Figure 1 shows a simple pattern from the simulated
domain described in the next section, representing a member
of a threat group visiting a target.

GEM also supports the specification of constraints be-
tween nodes. Often these are numeric constraints between
attributes representing amounts or dates attached to nodes—
e.g., an amount should be greater than $50,000 or an event
should occur within two days after a meeting.

Our design goal for the pattern graph representation is to
give to the analyst a representational capability that is pow-
erful, but still understandable to a lay-user and reasonably
efficient to match. In particular, we want a pattern language
that stops well short of the representational power and infer-
ential capabilities of first-order logic or conceptual graphs
(Sowa 1984), but still goes beyond the capabilities of simple
flat typed graphs. For additional expressive power, we ex-
tended the design of the pattern graph representation to in-

2This encoding representsanyperson named Michael Wolver-
ton, which is often sufficient for the purposes of pattern matching.
If the user needs to identify the person of interest more narrowly,
additional qualifiers (e.g., birthdate) can be used.

clude notions of hierarchy, disjunction, and cardinality. By
cardinality, we mean specifying information about the num-
ber of links, nodes, or subgraphs, e.g. “three or more visits.”
Figure 2 shows a hierarchical pattern representing a group
acquiring a threatening resource. The pattern includes a sin-
gle subpattern—GroupAcquiringResource—representing a
group member carrying out a transfer to obtain a resource.
The circular nodes indicate aninterface node, which are
nodes that are shared between the subgraph and its parent
graph. The subpattern has a cardinality constraint of “1+”,
indicating that it will match if one or more transactions in-
volving a given group and a given resource are found.

Pattern Comparison Metric
The term “graph edit distance” covers a class of metrics that
measure the degree of match between two graphs. Vari-
ants have been studied theoretically (Bunke 1997; Bunke &
Shearer 1998) as well as applied in a variety of systems.
Many of the applications have come in the machine vision
community (Shapiro & Haralick 1981; Sebastian, Klein, &
Kimia 2001; Neuhaus & Bunke 2004), but the concept has
also applied in reasoning by analogy (Wolverton 1994) and
other domains. In its simplest form, the graph edit distance
between two labeled graphsG1 andG2 is the smallest num-
ber of editing operations it would take to transformG1 into
G2. Allowable editing operations are node addition, node
deletion, edge addition, edge deletion, node label replace-
ment (i.e., changing the label attached to a node from one
term to another), and edge label replacement. This simple
model can be extended by adding costs to the various editing
operations, perhaps as a function of the labels on nodes or
edges, and measuring the edit distance between two graphs
as the minimum cost of a sequence of operations that con-
verts one into the other.

LAW uses the more complex model of associating costs
with operations. It uses only three of the six aforementioned
editing operations: node deletion, edge deletion, and node
replacement.3 LAW supports one other operation not found
in other graph edit systems: constraint deletion. Each node,
edge, and constraint in a GEM pattern graph has an associ-
ated cost for deleting it (see below). For node label replace-
ment, LAW uses the ontological distance between the types
of the pattern node and the mapped data node.

The collection of edit distance parameters contained
within a GEM pattern specify the allowable deviations from
the prototype that will still be considered a valid match, and
the cost that various deviations have on the overall quality of
the match. These parameters control the calculation of the
edit distance between the pattern and the data. They include:

• a deletion coston each node, link, and constraint in the
pattern. Each of these can be a number, which roughly

3Node addition and edge addition are not relevant in pattern
matching (unlike, for example, analogical reasoning), because of
the asymmetry between pattern and data: you aren’t trying to make
the pattern look like the entire data set, only a small portion of it
And while edge replacement could be a useful construct in pattern
matching, we have not yet found a need for it in practice in our use
of the system.

Figure 6: CrossGroupIntermediary, version 2—Revision that allows repeated communication with group members to serve as
a surrogate for known group membership

reflects the node’s or link’s level of importance in the pat-
tern. They can also be set to a symbol representing in-
finite cost, which indicates that the node or link must be
matched by a node or link in the data. The deletion cost on
a graph element represents its importance within the pat-
tern, and LAW’s display of the pattern shows that impor-
tance through color coding—red for an element that has
to be matched (high or infinite cost), green for an element
that has low cost if unmatched, and yellow otherwise.

• a maximum total edit distancefor allowable matches. No
matches that are above this threshold will be returned,
and any partial matches that exceed this threshold will be
pruned from the system’s search.

• themaximum number of matchesfor the system to return.

LAW’s edit distance metric also supports mapping a pat-
tern node of one type to a data node of another type, and
associating a cost to this mapping based on theontological
distancebetween the types. See (Wolvertonet al. 2003) for
more detail.

Matching Algorithm
LAW’s current approach to finding the closest matches to
the pattern in the data is based on A* search (Hart, Nilsson,
& Raphael 1968). A state in the search is a partial match—
a mapping between a subset of the pattern nodes and data
nodes, a mapping between a subset of the pattern links and
data links, a set of unmapped nodes, a set of unmapped links,
and a cost of the mappings so far. The cost is the sum of
the delete costs of the unmapped nodes and link, and re-
placement cost of the node and link mappings, as described
above.

LAW generates start states for the search by selecting the
node in the pattern with the fewest legal mappings in the data
and creating a partial match for those mappings. It expands
a partial match by selecting an unexplored node mapping

(PatternNode,DataNode) and generating new mappings
for each link adjacent toPatternNode to every mappable
link adjacent toDataNode. When a pair of links is mapped,
the nodes on the other ends of those links are mapped as
well. The search selects as the next state to expand the one
with the minimum worst-case cost—i.e., the cost of the map-
pings so far plus the cost of deleting all unexplored nodes
and links in the pattern.

The search process is designed to find a good set of pat-
tern matches quickly, and then use those existing matches to
prune the remainder of the search. One key asset of the ap-
proach is that it is ananytimealgorithm: at any point during
the process the algorithm can return the set of matches it has
found already, and that set of matches will monotonically
improve as the process continues.

Discussion and Future Work
We have already mentioned several of LAW’s features that
are specifically geared toward supporting the pattern devel-
opment cycle. One additional characteristic is LAW’s abil-
ity to specify and find inexact matches in the data. LAW’s
edit distance criterion allows an analyst to investigate not
just a narrowly-defined set of specific scenarios in the data,
but also a broadly-definedneighborhoodof situations sur-
rounding the prototype graph. This supports the analyst in
his exploration of the space of candidate patterns, as well as
the rapid focusing on the desired scenario of interest. Other
researchers have found that supporting visualization and ex-
ploration of the match neighborhood shortens the query re-
finement cycle (Jones 1998); LAW’s inexact match supports
this same sort of exploration, albeit in a different way from
previous information gathering tools.

One key criterion for any tool supporting the pattern de-
velopment cycle in intelligence gathering is scalability. The
system needs to be able to find matches reasonably quickly
even in datasets involving millions of links or more. A num-

(a) (b)

Figure 7: Improved efficiency from hierarchy and cardinality on two different hierarchical patterns—(a) “Group Gets Resources
for Mode” and (b) “Hub-and-Spoke”—compared to matching a “flat” approximation of those patterns.

ber of characteristics of LAW are specifically designed to
address scalability criteria:

1. The modified A* search LAW uses is designed to find
a reasonable set of matches quickly, and then use those
solutions to prune much of the search space for the re-
mainder of the search. In addition, as mentioned above,
the approach is an anytime algorithm which can halt and
return its intermediate matches at any stage in the process.

2. The pattern matcher also utilizes asearch planspecifying
the order in which to investigate pattern elements (nodes,
links, and subgraphs). The search plan can be automat-
ically calculated based on statistical analysis of the data,
or it can be manually specified by the pattern author if
he has particular experience suggesting a specific order of
exploration.

3. LAW’s data access is implemented on top of a relational
database, designed to keep storage and memory use man-
ageable.

Scalability is an ongoing topic of LAW research and de-
velopment, but the results so far are promising. The higher-
order pattern constructs—e.g., hierarchy and cardinality—
have given us one or two orders of magnitude speedup over
previous versions of LAW. Figure 7 shows some of the re-
sults from an experimental analysis of the effect of higher-
order constructs on matching time. Additional experiments
and results are described in (Wolverton & Thomere 2005).
We anticipate further scalability improvements from search
plans and other mechanisms still under development.

References
Bunke, H., and Shearer, K. 1998. A graph distance metric
based on the maximal common subgraph.Pattern Recog-
nition Letters19:255–259.
Bunke, H. 1997. On a relation between graph edit dis-
tance and maximum common subgraph.Pattern Recogni-
tion Letters18:689–694.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
neticsSSC-4(2):100–107.
Jones, S. 1998. Graphical query specification and dy-
namic result previews for a digital library. InEleventh An-
nual Symposium on User Interface Software and Technol-
ogy (UIST-98).
Neuhaus, M., and Bunke, H. 2004. A probabilistic ap-
proach to learning costs for graph edit distance. In17th
IEEE International Conference on Pattern Recognition.
Schrag, R. 2006. A performance evaluation laboratory for
threat detection technologies. Submitted for review.
Sebastian, T.; Klein, P.; and Kimia, B. 2001. Recognition
of shapes by editing shock graphs. InIEEE International
Conference on Computer Vision.
Shapiro, L., and Haralick, R. 1981. Structural descrip-
tions and inexact matching.IEEE Transactions on Pattern
Analysis and Machine Intelligence3:504–519.
Sowa, J. F. 1984.Conceptual Structures: Information Pro-
cessing in Mind and Machine. Addison-Wesley.
Wolverton, M., and Thomere, J. 2005. The role of
higher-order constructs in the inexact matching of seman-
tic graphs. InProceedings of the AAAI Workshop on Link
Analysis.
Wolverton, M.; Berry, P.; Harrison, I.; Lowrance, J.; Mor-
ley, D.; Rodriguez, A.; Ruspini, E.; and Thomere, J. 2003.
LAW: A workbench for approximate pattern matching in
relational data. InThe Fifteenth Innovative Applications of
Artificial Intelligence Conference (IAAI-03).
Wolverton, M. 1994. Retrieving Semantically Distant
Analogies. Ph.D. Dissertation, Stanford University.

