
LAW: A Workbench for Approximate Pattern Matching in Relational Data

Michael Wolverton, Pauline Berry, Ian Harrison, John Lowrance
David Morley, Andres Rodriguez, Enrique Ruspini, Jerome Thomere

Artificial Intelligence Center
SRI International

333 Ravenswood Ave
Menlo Park, California 94025
<lastname>@ai.sri.com

In Proceedings of the Fifteenth Innovative Applications of Artificial Intelligence Conference (IAAI-03), 2003. This version corrects an error that
appeared in the published version.

Abstract

Pattern matching for intelligence organizations is a
challenging problem. The data sets are large and noisy,
and there is a flexible and constantly changing notion of
what constitutes a match. We are developing the Link
Analysis Workbench (LAW) to assist an expert user in
the intelligence community in creating and maintaining
patterns, matching those patterns against a large collec-
tion of relational data, and manipulating partial results.
This paper describes two key facets of the LAW sys-
tem: (1) a pattern-matching module based on agraph
edit distancemetric, and (2) a system architecture that
supports the integration and tasking of multiple pattern
matching modules based on their capabilities and the
specific problem at hand.

Introduction
An important role of intelligence organizations is to identify
and track situations of interest—terrorist and other crimi-
nal activity, signs of impending political upheaval abroad,
etc.—in a sea of noisy and incomplete information. A large
amount of the information intelligence professionals make
use of today is in relational form (i.e., stored in relational
databases), and we can expect that amount to increase dra-
matically in the near future. There is a critical need for tech-
nology that helps intelligence experts find and elaborate ev-
idence in relational data. Specifically, we want to develop
tools that help an intelligence analyst define and match pat-
terns in relational data, where the notion of “match” is very
broad and gives the analyst a large amount of flexibility.

We are developing the Link Analysis Workbench (LAW)
to help meet this need. LAW is a system designed to allow
a domain expert user to build and refine patterns quickly, to
search for matches from a large data set, and to understand
and compare the matches it finds easily. Because the in-
telligence domain involves missing data and even imprecise
user understanding of what the right pattern should be, LAW
is specifically focused onapproximatepattern matches—
situations in the data that are similar to, but not exactly the
same as, the situation represented in the pattern. LAW is

Approved for Public Release, Distribution Unlimited.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

also designed as a user-centric system, where the pattern
representation and matching criteria are understandable by
an intelligence expert user, and where the user can play an
important, hands-on role in the system’s cycle of authoring,
matching, and revising patterns.

This paper is organized around two major aspects of the
LAW system:

• A graph-based pattern representation and matching capa-
bility. This includes a flexible, hierarchical pattern rep-
resentation language based on graphs, a pattern compari-
son metric based on a variant ofgraph edit distance, and
an anytime search mechanism for finding approximate
matches to the pattern in large data sets.

• An architecture and user interface that support integration
of multiple pattern matching tools, including LAW’s own.
This architecture allows the user to specify patterns in a
generic, user-friendly framework, allows patterns to be
dispatched to the matching tool(s) most appropriate for
it, and merges the resulting matches and presents them to
the user in a common framework.

We begin by describing LAW’s pattern representation and
pattern matching approach. Then we give an example of
LAW’s pattern matching behavior and describe LAW’s user
interface. After that, we describe the architecture and com-
mon pattern language LAW uses to integrate multiple pat-
tern matching tools into a single system. Finally, we de-
scribe open issues and planned future work on the system.

Patterns and Matching
The goal of the LAW pattern matching component is to help
intelligence analysts1 find instances in the world of generic
scenarios comprised of combinations of events and facts
about players involved in those events. This problem re-
quires more than a simple database querying capability be-
cause of several sources of ambiguity and uncertainty within
the process. There may be noise or missing information
within the data. The same or similar situations may be repre-
sented in multiple different ways. And most importantly, the

1Here and throughout the remainder of the paper, we use the
term “analyst” as a shorthand to describe the intended end-user of
LAW. In practice, LAW is more broadly intended for any intelli-
gence professional, from low-level analysts to high-level managers
in the intelligence community.



analyst may only be able to describe the situation of interest
at a high level or with a limited amount of precision.

The model of patterns LAW uses for this problem of ap-
proximate matching is to have each pattern represent two
things: (1) aprototypeof the situation of interest, and (2)
allowabledeviationsfrom the prototype, along with the im-
pact these deviations have on the assessed quality of the
match. To fill this model and to meet the additional re-
quirement of understandability, we have chosen a pattern
representation based on graphs, and a match metric based
ongraph edit distance.

Pattern Representation
A LAW pattern consists of two parts: a graph, representing
the prototype situation described above; and a collection of
edit distance parameters, representing the allowable devia-
tions described above. We describe the former here, and de-
scribe the latter below under the Pattern Comparison Metric
heading.

The graph portion of the pattern representation (called the
pattern graph) is a collection of typed vertices (nodes), and a
collection of labeled edges (links) relating the vertices. Each
node in the graph is ageneric concept(Sowa 1984) of a type,
or a literal. The types are organized in an ontology; to ac-
cess the ontology in LAW, we are using OCELOT (Paley,
Lowrance, & Karp 1997), an OKBC-compliant (Chaudhri
et al. 1998) knowledge representation system. Labels on
edges are also typed with the types organized in the ontol-
ogy. Specific instances can be approximated in the pattern
using literals. For example, the person Michael Wolverton
can be represented by attaching a PERSON node to a node
containing the string “Michael Wolverton” via a NAME re-
lation.2

Our design goal for the pattern graph representation is to
give to the analyst a representational capability that is pow-
erful, but still understandable to a lay-user and reasonably
efficient to match. In particular, we want a pattern language
that stops well short of the representational power and infer-
ential capabilities of first-order logic or conceptual graphs
(Sowa 1984), but still goes beyond the capabilities of simple
flat typed graphs. We have recently extended the design of
the pattern graph representation to include notions of hier-
archy, disjunction, and cardinality.3 For example, Figure 1
shows a hierarchical pattern representing a murder-for-hire.
The pattern hierarchically includes two subpatterns, one rep-
resenting a phone call (phoneCallPattern), and one repre-
senting a meeting (meetingPattern). In this figure, only the
interface nodes of the subpatterns are shown; the internal
structure is hidden. We are currently upgrading the pattern
comparison metric and the matching algorithm to handle the
more advanced pattern graph representation. LAW does cur-
rently have an ability to match graphs hierarchically, but it is

2This encoding representsanyperson named Michael Wolver-
ton, which is often sufficient for the purposes of pattern matching.
If the user needs to identify the person of interest more narrowly,
additional qualifiers (e.g., birthdate) can be used.

3By cardinality, we mean specifying information about the
number of links, nodes, or subgraphs, e.g. “three or more meet-
ings.”

Figure 1: Graphical depiction of a Murder-For-Hire pattern

primitive. The less sophisticated, flat graph the current im-
plementation uses to represent murder-for-hire is shown in
Figure 3.

Pattern Comparison Metric
The term “graph edit distance” covers a class of metrics that
measure the degree of match between two graphs. Vari-
ants have been studied theoretically (Bunke 1997; Bunke
& Shearer 1998) as well as applied in domains as diverse
as image understanding (Shapiro & Haralick 1981) and rea-
soning by analogy (Wolverton 1994). In its simplest form,
the graph edit distance between two labeled graphsG1 and
G2 is the smallest number of editing operations it would take
to transformG1 into G2. Allowable editing operations are
node addition, node deletion, edge addition, edge deletion,
node label replacement (i.e., changing the label attached to
a node from one term to another), and edge label replace-
ment. This simple model can be extended by adding costs to
the various editing operations, perhaps as a function of the
labels on nodes or edges, and measuring the edit distance
between two graphs as the minimum cost of a sequence of
operations that converts one into the other.

LAW uses the more complex model of associating costs
with operations. The current LAW model uses only three
of the six aforementioned editing operations: node deletion,
edge deletion, and node replacement.4 Each node and edge
in a LAW pattern graph has an associated cost for deleting
it (see below). For node label replacement, LAW uses the
ontological distance between the types of the pattern node
and the mapped data node.

4Node addition and edge addition are not relevant in pattern
matching (unlike, for example, analogical reasoning), because of
the asymmetry between pattern and data: you aren’t trying to make
the pattern look like the entire data set, only a small portion of it
And while edge replacement could be a useful construct in pattern
matching, we have not yet found a need for it in practice in our use
of the system.



The collection of edit distance parameters contained
within a LAW pattern specify the allowable deviations from
the prototype that will still be considered a valid match, and
the cost that various deviations have on the overall quality of
the match. These parameters control the calculation of the
edit distance between the pattern and the data. They include:

• a deletion coston each node and link in the pattern.
Each of these can be a number, which roughly reflects
the node’s or link’s level of importance in the pattern.
They can also be set to a symbol representing infinite cost,
which indicates that the node or link must be matched by
a node or link in the data.

• a maximum ontological distanceon each node in the pat-
tern. This specifies the allowable distance between the
type of a pattern node and the type of a node in the data
that matches it. Setting this to 0 indicates that the pat-
tern node must be matched exactly, e.g,, a PHONE-CALL
node in the pattern can only match a PHONE-CALL node
in the data. Setting it to a number greater than 0 indicates
that the node can be matched to a node of another type,
e.g., a PHONE-CALL node in the pattern can be match
other subtypes of COMMUNICATION.

• an ontological distance multiplier, which specifies the
cost of mapping a node of a given type in the pattern to a
node of another type in the data. This factor specifies how
much penalty the match will pay, for example, for match-
ing a PHONE-CALL node in the pattern to an EMAIL
node in the data.

• a maximum total edit distancefor allowable matches. No
matches that are above this threshold will be returned,
and any partial matches that exceed this threshold will be
pruned from the system’s search.

• themaximum number of matchesfor the system to return.

Matching Algorithm
LAW’s current approach to finding the closest matches to
the pattern in the data is based on A* search (Hart, Nilsson,
& Raphael 1968). A state in the search is a partial match—
a mapping between a subset of the pattern nodes and data
nodes, a mapping between a subset of the pattern links and
data links, a set of unmapped nodes, a set of unmapped links,
and a cost of the mappings so far. The cost is the sum of
the delete costs of the unmapped nodes and link, and re-
placement cost of the node and link mappings, as described
above.

LAW generates start states for the search by selecting the
node in the pattern with the fewest legal mappings in the data
and creating a partial match for those mappings. It expands
a partial match by selecting an unexplored node mapping
(PatternNode,DataNode) and generating new mappings
for each link adjacent toPatternNode to every mappable
link adjacent toDataNode. When a pair of links is mapped,
the nodes on the other ends of those links are mapped as
well.

The search selects as the next state to expand the one with
the minimum worst-case cost—i.e., the cost of the map-
pings so far plus the cost of deleting all unexplored nodes

0

5

10

15

20

25

30

35

250 450 650 850 1050 1250

Data set size (# edges)

S
ta

te
s 

(p
ar

tia
l m

at
ch

es
) 

ex
am

in
ed

 (m
ill

io
n

s)

Modified A* (LAW)

Branch-and-bound

(Virtually) No Space
Reduction

Figure 2: Effects of heuristics in pattern search

and links in the pattern. The search prunes any partial
match that cannot possibly have a lower cost than the best
n matches found so far, wheren is the maximum number
of matches the user wants to see, as well as any that cannot
possibly have a lower cost than the pattern’s maximum al-
lowable cost. In addition, at the end of the process LAW
prunes any mappings that aresubsumedby other discov-
ered mappings. A mappingA subsumes a mappingB if
MappedEntities(A) ⊆MappedEntities(B), i.e., if they
differ only in thatB has more node and link deletions than
A.

The search process is designed to find a good set of pat-
tern matches quickly, and then use those existing matches to
prune the remainder of the search. One key asset of the ap-
proach is that it is ananytimealgorithm: at any point during
the process the algorithm can return the set of matches it has
found already, and that set of matches will monotonically
improve as the process continues.

The performance of the algorithm has not yet been rig-
orously evaluated, but our preliminary experience using the
system on evaluation data sets suggests the pattern matcher’s
speed is tolerable, if not yet scalable to the size data sets
to which it will eventually be applied. The pattern matcher
completed the 2002 evaluation problem—involving match-
ing patterns of 20-30 nodes against 28 fabricated data sets
of varying size—in a few hours, which was comparable in
speed to other link discovery tools evaluated.

Figure 2 shows the benefit of different aspects of the ap-
proach. The top line shows the amount of effort it takes to
match data sets of varying size with relatively little search
control. The middle line shows the performance of pruning
the search as described above, but selecting the next state
to explore in depth-first order rather than a heuristic evalu-
ation function. The bottom line adds the evaluation func-
tion selection. One thing the graph demonstrates is that the
match time is not completely determined by data set size;
both the heuristic approaches were slower in the mid-size
data set than they were in the largest one. The match time
will be dependent on a large number of factors in addition
to data set size, including the size of the pattern, the number
of good partial matches in the data, and the pattern-defined
maximum allowable cost of a match.



Figure 3: LAW’s display of the Murder-for-Hire pattern

Example and Interface
This section has two purposes. First, it provides an example
of the user’s interaction with LAW—and especially the LAW
pattern matcher described in the previous section—through
screen shots of the system. Second, it discusses the design of
LAW’s user interface, which is based on the common pattern
framework and web services architecture described in the
next section.

Interface Design
LAW’s interface runs primarily through the web. The web-
based implementation offers two main advantages. First,
any connected computer with a browser can access it with-
out the need for an error prone installation cycle. Second, it
cuts to zero the time from release to deployment, and it al-
lows concerns of the users to be answered, implemented, and
delivered much more quickly. On the other hand, the disad-
vantage of a browser-based interface is that there is only so
much you can do using HTML and JavaScript. Highly in-
teractive HTML interfaces are either kludgy and inefficient
or impossibly slow. For that reason, certain highly inter-
active pieces of the LAW interface—the pattern editor in
particular—are implemented as local applications that con-
nect to the original server using web services.

Given the pattern matching task described above, a user
interface must provide a way to make sense of the structure
and amount of the information available. It must also pro-
vide a pattern editor, that permits the creation of patterns
in terms of the data. The most important component, the
pattern matcher has limited user interface. When matches
are extracted, they must be shown in a drillable way, that
is consistent both with the views of the data and the pattern
construction.

Visualization Visualization in LAW can be divided into
three areas: patterns, the data to which the patterns are
matched, and the ontological concepts of which the pattern
and the data are composed.

As described earlier, patterns contain two elements: a

Figure 4: Ontology browsing

graph that represents the prototype situation, and the edit
distance parameters that represent the allowable deviations
from the prototype. LAW’s presentation of patterns displays
both elements. Figure 3 shows LAW’s display of a pattern.
The display shows the objects and relations of the pattern
(the nodes and links) as well as the edit distance parameters
(encoded in colors of the nodes and links).

Ontology management is a well-studied problem (Paley,
Lowrance, & Karp 1997). Since ontologies are not a pri-
mary focus of LAW, its ontology exploration and editing
capabilities are limited. Figure 4 shows the user exploring
the ontology via LAW’s hierarchical browser. Although the
range of things you can do to the ontology is restricted, our
tool can import DAML (Hendler & McGuinness 2000) or
CycL (Cycorp 2003) ontologies, so modification of these is
permitted by any tool that is able to export in those formats.

The last area, visualization of primary data, has not played
an important role in our work on this project up to this point.

Pattern Editing LAW’s development has been guided by
our view that pattern matching should be an interactive task,
where patterns will be continuously refined during an itera-
tive matching process. Some patterns will even have to be
created either from scratch (i.e. directly from concepts in the
ontology) or from other patterns.

The interactive nature of the pattern matching process re-
quires that the user be able to revise his thinking quickly,
which in turn requires the ability to make fast modifications
to the graph. A browser is ill-suited for this type of interac-
tion. In the current version of LAW, we are using a knowl-
edge acquisition tool called Shaken (Thomereet al. 2002)
for the construction of patterns. Figure 5 shows the user
editing a pattern in Shaken.

The requirements for a pattern editor include: ability to
edit and/or incorporate existing patterns, coming from other
sources, ability to build patterns from concepts in the ontol-



Figure 5: SHAKEN interface

ogy, handling of small or very big patterns (possibly thou-
sands of nodes). The pattern editor is basically a graph edi-
tor, but with a constrained set of possible operations. It is
also component-based, which means that patterns can be
made of other patterns. The main operations that can be
performed on a pattern are: the addition of a node, the con-
nection of two nodes and the merging of two nodes.

Pattern Match Visualization The final piece of the inter-
face is the pattern match (result) visualization. Just as we
emphasized how important it is that we can observe the data
and the patterns under the same framework, the same is true
for the results. This is important so that the relationship be-
tween the pattern and the results instantiating it is self ev-
ident. If a mental mapping between one and the other is
difficult, then the ability to modify the pattern as we look at
the results is diminished.

When a request for matches is initiated, the server will
asynchronously start the search and inform the user of it.
When the results are available, the ones that meet the user’s
criteria are presented, ordered best to worst. The images of
the results are small replicas of the graph used to describe
the pattern. The nodes of the result image are colored to
display the degree of accuracy obtained in the match. Figure
6 shows the results of the match of Figure 3’s pattern.

Although not implemented currently, the idea is that these
matches can be reentered into the system as data, so that they
can be revisited later on. This scenario makes sense in the
case of streaming data, where the system does not yet know
if more evidence is going to become available. There must
be a big portion of the system devoted to what we call “hy-
pothesis management”—that is, storing, revising and com-
paring past results. The current system offers a good expla-
nation of why a match coincides with the pattern offered, by
assigning scores to all the nodes and relationships.

Architecture
While the LAW pattern matcher described in the last two
sections provides a powerful and flexible mechanism for
finding partial matches to patterns, it cannot possibly cover

Figure 6: Results list page

all the pattern matching criteria an analyst could have. There
are many tools under development, general and specialized,
that support the many complementary data exploration re-
quirements of the intelligence community. In a given search
session, an analyst may want to combine results from an ap-
proximate match to a general scenario (as retrieved, e.g.,
by the LAW matcher just described), a general probabilis-
tic reasoning engine (e.g., (Taskar, Abbeel, & Koller 2002)),
and a specialized tool for determining group membership
(e.g., (Kubicaet al. 2002)).

We have developed and implemented an architecture for
LAW that supports integration of multiple pattern matching
tools. It includes a language for sharing patterns, and a web
services architecture that makes integration straightforward.
The LAW user interface allows a user to interact with these
tools through a common framework. Right now, the user
must select and task the tools manually, but our aim is to
have the system provide support for tasking of tools through
LAW’s Control component.

High Level Architecture
LAW is architected as a web application, made up of a num-
ber of web service components. At the heart of LAW is a
knowledge base server, with an in-built web server. Data for
this knowledge base server can reside in either a database
or a flat file. The client side of LAW is ephemerally gener-
ated web pages, encoded in HTML, Javascript and embed-
ded Java applets, with the client being any standard modern
web browser.

This thin client, web server architecture had previously
been used for a successfully fielded collaborative structured
argumentation application, SEAS (Lowrance, Harrison, &
Rodriguez 2001). The adoption of a web browser as the
client, removed the need to install and maintain client soft-
ware in end-user organizations. For LAW, we decide to en-
hance this architecture, using a web service model. Our
driver for this was that partner companies were simultane-
ously developing applications, which we wanted to make



available to the LAW user through its GUI. Likewise, sev-
eral of the LAW components were of general value to ex-
ternal partners, outside of the LAW framework. Given that
we were not able to state at the outset all the different ways
in which we and other partners would integrate the vari-
ous components into larger systems, web services offered
an ideal way of providing a lightweight, flexible means of
integration. The idea was that during the development of the
various components, and as our understanding of the domain
was refined, we would be able to experiment with different
configurations of web services to provide different, comple-
mentary, end user solutions.

From a user’s perspective, they are unaware of the con-
figuration/location of the underlying services, such as pat-
tern matching. Instead they are presented with an interface,
which can hide all the integration details. For instance, LAW
is being designed so that its underlying control structure
can break down pattern match tasks into smaller tasks, send
these match tasks to different, appropriate match services,
and then merge the results back into a whole. All this can
happen totally automatically, without the intervention of a
user. The Future Work Section discusses this in more detail.

Figure 7 depicts the current LAW architecture. In the cur-
rent architecture, LAW can be viewed as having three inter-
nal components:

• the control component that is responsible for coordinating
the tasks between the user input (via UI) and the other
(internal and external) components.

• the UI component, that is the user interfaces that are pre-
sented to a user to request pattern matches and to view the
results of matches

• the Pattern Match component

LAW itself contains a web server, which is used to com-
municate between the different internal components, as well
as external components, with the messages being encoded
in XML, conforming to defined schema (PatternML, Hy-
pothesisML and ControlML). External components are all
intended to be tasked using SOAP, although currently some
components are still tasked through custom interfaces.

The LAW server sits on top of SRI’s Ocelot knowledge
base server, with communication between LAW and the
server via OKBC. This knowledge base server contains the
domain ontologies together with the evidence data sets that
are to be matched against.

The LAW pattern editor is currently a separate applica-
tion, the Shaken editor (Thomereet al. 2002). Pattern sde-
fined using this editor are stored in LAW’s Ocelot knowl-
edge base server

SOAP
We chose to adopt SOAP (Simple Object Access Protocol
- www.w3.org/TR/SOAP ) as the standard communication
protocol between LAW’s internal and external web services.
SOAP is a lightweight protocol for exchange of information
in a decentralized, distributed environment. It is an XML
based protocol, which is neutral about the actual transport
mechanism. This means that HTTP, SMTP, raw TCP, an

instant messaging protocol like Jabber, etc., could poten-
tially be used for message transport. For LAW we decided
to adopt HTTP as the communication protocol. LAW uses
SOAP to enable remote procedure calling (RPC), where an
RPC call maps naturally to an HTTP request and an RPC
response maps to an HTTP response. SOAP was also at-
tractive from an architectural standpoint in that it does not
require that a message be sent from a client to a server in a
single ”hop”. The SOAP specification defines the notion of
intermediaries, nodes that a message passes through on its
way to its final destination. Using intermediaries, you can
”virtualize” physical network topology so that messages can
be sent to web services using whatever path and whatever
combination of transport protocols is most appropriate. This
last capability facilitates our vision for the LAW architec-
ture as a federated collection of services that communicate
via the Internet to coordinate their search for pattern matches
over distributed data sources, in service of a community of
intelligence analysts

XML Schema
To allow communication between various components in-
ternal to LAW and external component web services, we
needed to define an XML schema for the content of the
SOAP messages, so that all components could understand
the syntax of the content, and map the content to their in-
ternal representations. We adopted a layered approach to
schema design, where the core is a schema to describe tem-
plate domain patterns (we called this schema PatternML).
PatternML was designed to have two main uses: as an in-
terchange language between pattern editors/visualizers; and
as an input format to pattern matching components. Patterns
defined using PatternML made reference to existing ontolo-
gies for domain concepts. Layered on top of PatternML
was the HypothesisML schema, which was designed to be
a common output format from pattern match components
and as an input format for hypothesis visualizer or hypoth-
esis management components. HypothesisML describes the
match between a PatternML patterns and a particular evi-
dence data set. Layered on top of both of these schemas
was the ControlML schema, which was designed to describe
intended task control information. ControlML allows one
component to describe what it wishes other components to
do, together with various control parameters, and allows Pat-
ternML or HypothesisML as content (to describe pattern
templates or hypothesized pattern match(es), respectively).

Control
An analyst can use LAW for a variety of purposes—for ex-
ample, to develop, test and refine a new pattern, to make
a one-off request to match a pattern over a specified data
source, or to monitor data sources at a regular interval for a
group of predefined patterns. These purposes, and more, are
supported by an underlying control methodology, based on
dynamic process management. The LAW controller com-
bines the highly reactive techniques employed in intelligent
process control domains with the more accountable and sys-
tematic approach to business management provided by the
field of workflow management systems.



Control

LAW
Pattern
Matcher

UI

HypMLPatML

PatML

HypML

LAW

OKBC

Pattern Matching
& Browsing

HTTP/HTML

SOAP

PatternML

HypothesisML

ControlML Pattern
Matcher 1

Pattern
Matcher 2

External Pattern 
Matching Components

CycL

DAML
Datasets &
Ontology

Ocelot

Ontology

Links

Patterns

OKBC

Secondary
Matcher 2

Secondary
Matcher 1

HTTP

Post

Foreign

Function

Secondary Pattern
Matching

Components

HTTP/HTML

User Interface 
& Controller

for EELD

KM

Ontology

Patterns

K M

K M

Shaken

Pattern Editing

Figure 7: LAW Architecture

The implementation uses the ACT formalism, (Myers
1993), to encode the procedural knowledge necessary to
capture the flows of control. These can be viewed graphi-
cally so that the work processes are accessible to the user.
This feature will prove useful in the future when we encode
search strategies in the same way. Each ACT represents a
specific flow of control in a given context. The SRI Proce-
dural Reasoning System (PRS), (Georgeff & Ingrand 1989),
forms the basis for a hierarchical, reactive control system
to manage requests from the user interface, e.g. one-off,
repetitive, or periodic requests. Using a workflow manage-
ment model of tasking,(Berry & Drabble 1999), PRS also
coordinates the tasking and monitoring of available pattern
matching tools including the LAW matcher. Experiments
have included the dynamic tasking of the LAW matcher and
two other pattern matching tools via web interfaces.

Future Work
The current version of LAW represents a step toward the
kind of user-centric, approximate pattern matching tools re-
quired by the intelligence community. But there are many
important issues that remain to be tackled. Here are a few of
the needs that we consider the most pressing.

Expanded Pattern Representation and Matching

As discussed above, we have designed extensions to LAW’s
pattern representation language that incorporate hierarchy,
disjunction, and cardinality within patterns. One current

area of research and development is adapting LAW’s pat-
tern comparison metric and match algorithm to handle this
expanded representation. Particular challenges include pro-
ducing an extended graph edit distance metric that sensibly
deals with cardinality, and exploiting the hierarchical struc-
ture of patterns to find good matches more quickly than for
flat patterns.

Scalability
While LAW’s current pattern matching approach is efficient
enough to assist an analyst in investigating relatively small
data sets, a great deal of work needs to be done to support ap-
proximate pattern matching on a very large amount of data.
Approaches to scale LAW to large data sets will include: in-
corporating relational database storage and retrieval technol-
ogy into the system, domain-dependent control information
that restricts the data under consideration to a small subset
of the entire data space, and distributing a pattern match to
multiple processors and/or tools via the Control component.

Pattern-Specified Control
This is another approach to improve scalability that deserves
separate mention. Currently, LAW allows the analyst to
specify the degree of importance of particular nodes and
links in the pattern, through the use of the pattern’s edit dis-
tance parameters. But we would like to give the analyst even
more ability to bring his expertise to bear in directing the
search for matches. In particular, we will investigate ways of
giving him procedural control over the pattern match: e.g.,



which node(s) in the pattern to attempt to match first, and in
which data source(s) to look.

Automated Tasking of Pattern Matchers
As described above, LAW’s architecture provides a mecha-
nism for the integration of multiple pattern matching tools,
and gives the user the ability to select a tool for a particular
pattern matching task. In order to fully and flexibly support
a wide variety of pattern matching needs, however, the sys-
tem should have some ability to automatically task the tools
based on their capabilities. This tasking requires two main
technical components; (1) the modelling and representation
of capability, and (2) the mechanisms to support web-based
tasking, described in a previous section.

The approach we envision will enable semantic tasking by
modelling the capabilities and properties of a particular tool
using a methodology developed for workflow management
system SWIM (Berry & Drabble 1999). The type of charac-
teristics to be modelled includes the service itself, data over
which the service is applicable, strengths and weaknesses
according to pattern structure and pattern semantics, perfor-
mance, and response time.

Acknowledgements
This research was supported by the Defense Advanced Re-
search Projects Agency (DARPA) under Air Force Research
Laboratory (AFRL) contract number F30602-00-C-0193.
Thanks to Brian Gallagher and Tina Eliassi-Rad, who iden-
tified an error in the published version of this paper.

References
Berry, P., and Drabble, B. 1999. Swim: An AI-based
system for workflow enabled reactive control. InIn pro-
ceedings of the IJCAI Workshop on Workflow and Process
Management held as part of IJCAI-99.
Bunke, H., and Shearer, K. 1998. A graph distance metric
based on the maximal common subgraph.Pattern Recog-
nition Letters19:255–259.
Bunke, H. 1997. On a relation between graph edit dis-
tance and maximum common subgraph.Pattern Recogni-
tion Letters18:689–694.
Chaudhri, V. K.; Farquhar, A.; Fikes, R.; Karp, P. D.; and
Rice, J. P. 1998. OKBC: A programmatic foundation
for knowledge base interoperability. InProceedings of the
AAAI-98.
Cycorp. 2003. Ontological engineer’s handbook.
http://www.opencyc.org.
Georgeff, M. P., and Ingrand, F. F. 1989. Decision making
in an embedded reasoning system. InEleventh Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
89).
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
neticsSSC-4(2):100–107.
Hendler, J., and McGuinness, D. L. 2000. The DARPA
agent markup language.IEEE Intelligent Systems67–73.

Kubica, J.; Moore, A.; Schneider, J.; and Yang, Y. 2002.
Stochastic link and group detection. InProceedings of the
Eighteenth National Conference on Artificial Intelligence.
Lowrance, J. D.; Harrison, I. W.; and Rodriguez, A. C.
2001. Capturing analytic thought.Proceeding of the First
International Conference on Knowledge Capture84–91.
Myers, K. L. 1993. The ACT Editor User’s Guide. Ar-
tificial Intelligence Center, SRI International, Menlo Park,
CA.
Paley, S. M.; Lowrance, J. D.; and Karp, P. D. 1997. A
generic knowledge-base browser and editor. InProceed-
ings of the 1997 National Conference on Artificial Intelli-
gence.
Shapiro, L., and Haralick, R. 1981. Structural descrip-
tions and inexact matching.IEEE Transactions on Pattern
Analysis and Machine Intelligence3:504–519.
Sowa, J. F. 1984.Conceptual Structures: Information Pro-
cessing in Mind and Machine. Addison-Wesley.
Taskar, B.; Abbeel, P.; and Koller, D. 2002. Discrimina-
tive probabilistic models for relational data. InEighteenth
Conference on Uncertainty in Artificial Intelligence.
Thomere, J.; Rodriguez, A.; Chaudhri, V.; Mishra, S.; Erik-
sen, M.; Clark, P.; Barker, K.; and Porter, B. 2002. A web-
based ontology browsing and editing system. InConfer-
ence on Innovative Applications of Artificial Intelligence.
AAAI.
Wolverton, M. 1994. Retrieving Semantically Distant
Analogies. Ph.D. Dissertation, Stanford University.


